
Linear IFSs consisting

of stochastic matrices

Krzysztof Leśniak
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AIMD (additive increase multiplicative decrease)

[1] Corless, King, Shorten, Wirth (2016)

Model of TCP: user j = 1, ..., d , d ≥ 2, demands access to the internet,

0 < γj < 1 – coefficient of increase of j ’s share,
∑d

j=1 γj = 1,

0 ≤ βj ≤ 1 – coefficient of decrease of j ’s share.

A =

[
β1 ... 0
0 ... βd

]
+

 γ1
...
γd

 [1− β1 . . . 1− βd ] ,

wn+1 = Awn — evolution of share at nth capacity event,
c — capacity of connection,

wn ∈ Hc = {u ∈ Rd :
∑d

i=1 ui = c}.
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AIMD matrix

[1] Corless, King, Shorten, Wirth (2016)

A =

[
β1 ... 0
0 ... βd

]
+

 γ1
...
γd

 [1− β1 . . . 1− βd ] ,

βj ∈ [0, 1], γj ∈ (0, 1),
∑d

j=1 γj = 1.

[1, Lemma 3.5 p.33]:
If maxi=1,...,d βi < 1, then A is Banach contractive on

∆c = {u ∈ Rd :
∑d

i=1 ui = c , ui ≥ 0} ⊆ Hc with respect to

‖u‖1 =
∑d

i=1 |ui |.

QUESTION:
What about #{i = 1, .., d : βi = 1} = 1?
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Kantrowitz–Neumann criterion (2014) for contractivity

[2, Proposition 3.2] after improvement:

Let A = (aij)i ,j∈{1,...,d} be a column-stochastic matrix, i.e., aij ∈ [0, 1],∑d
i=1 aij = 1, i , j ∈ {1, . . . , d}. Then the following are equivalent:

(i) A is a contraction w.r.t. ‖.‖1 on some c-hyperplane Hc ;

(ii) A is a contraction w.r.t. ‖.‖1 on every Hc ;

(iii) (positivity) AT · A has positive all entries.
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Kantrowitz–Neumann criterion (2014) for AIMD

Let A = (aij)i ,j∈{1,...,d} be a column-stochastic matrix, i.e., aij ∈ [0, 1],∑d
i=1 aij = 1, i , j ∈ {1, . . . , d}. Then the following are equivalent:

(i) A is a contraction w.r.t. ‖.‖1 on some c-hyperplane Hc ;

(ii) A is a contraction w.r.t. ‖.‖1 on every Hc ;

(iii) (positivity) AT · A has positive all entries.

Corollary: If an AIMD matrix

A =

[
β1 ... 0
0 ... βd

]
+

 γ1
...
γd

 [1− β1 . . . 1− βd ] ,

βj ∈ [0, 1], γj ∈ (0, 1),
∑d

j=1 γj = 1, satisfies

#{i = 1, .., d : βi = 1} ≤ 1

(equivalently, A has at most one trivial = unit vector column),
then A is contractive on (Hc , ‖.‖1).
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Switched AIMD matrices ⇒ IFS

Assume:
Ai – column-stochastic matrices,
AT
i · Ai has positive all entries, i = 1, . . . ,N.

Then
for every c ∈ R,
Fc = (Hc , fi (u) = Ai · u : i = 1, . . . ,N) is contractive w.r.t. ‖.‖1.

In particular, the above holds when each matrix Ai is an AIMD matrix
with at most one trivial column (unit vector).
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Switched AIMD matrices ⇒ IFS attractor

(a) Fc has an attractor A∗(c), i.e., ∀ bounded ∅ 6= S ⊆ Hc ,

F n(S) :=
⋃

(i1,...,in)∈{1,...,N}n
fin ◦ . . . ◦ fi1(S)

Hausdorff−→
n→∞

A∗(c);

A∗(c) ≡ A∗(1) ∀c 6=0;

(b) (Fc , (pi )
N
i=1) has an attractive invariant distribution µ∗(c), i.e.,

Mn(µ) :=
∑

(i1,...,in)∈{1,...,N}n
pin · . . . ·pi1 · (µ ◦ f −1

i1
◦ . . . ◦ f −1

in
)

w∗
⇀

n→∞
µ∗(c)

∀ distrib. µ on Hc ;
∑N

i=1 pi = 1, pi > 0; supp µ∗(c) = A∗(c);

(c) (chaos game) A∗(c) =
⋂∞

n=0 {um : m ≥ n}, where{
un := fin(un−1), n ≥ 1, u0 ∈ Hc ,
{1, . . . ,N}∞ 3 (in)∞n=1 – disjunctive (i.e., contains all finite words).
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AIMD triangle

F = (R3; fi (u) = Ai · u : i = 1, 2, 3) contractive on Hc but not on R3.
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AIMD triangle vs Kigami triangle

F = (R2; fi : i = 1, 2, 3) f1
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AIMD triangle: analysis

∆c = conv{(c, 0, 0), (0, c , 0), (0, 0, c)},

LHc (A∗(c)) ≤ LHc (F n(∆c)) ≤ 3n ·
(

3

16

)n

LHc (∆c) →
n→∞

0.
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Kantrowitz–Neumann criterion (2014) for ergodicity

[2, Theorem 3.3] & improved [2, Proposition 3.2]
Let A = (aij)i ,j∈{1,...,d} be a column-stochastic d × d-matrix. Then the
following are equivalent:

(a) A is ergodic, i.e., ∃!
u∗∈∆1

∀u∈∆1 Ak u −→
k→∞

u∗;

(b) ∃p≥1 Ap contains a strictly positive row;

(c) ∃p≥1 B := Ap is scrambling, i.e.,

∀k,l∈{1,...,d} ∃j∈{1,...,d} bjk , bjl > 0;

(d) ∃p≥1 B := Ap is an Edelstein contraction on ∆1 w.r.t. ‖.‖1, i.e.,
‖Bu − Bv‖1 < ‖u − v‖1 for probability vectors u 6= v ∈ ∆1;

(e) A is an eventual contraction on (H1, ‖.‖1) ⊇ ∆1, i.e., ∃p≥1 Ap is a
Banach contraction on H1;

(f) ∃p≥1 (Ap)T · Ap � 0.

Remark: If the above has simple proof, then the classical criterion for
ergodicity of Markov matrices easily follows from metric fixed point theory.
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Wielandt-type matrix

Wd :=


0 α 0 . . . 0
0 0 1 . . . 0

. . . . . .
0 0 0 . . . 1
1 1− α 0 . . . 0

 , α ∈ (0, 1).

W p
10 (b)= has positive row � 0 (d)= is contractive

p 73 82 41

[K & N & Ransford 2011] A satisfies (b) ⇒ Ap contains positive row
for p = d2 − 3d + 3; optimal when A = Wd ;

[Horn & Johnson “Matrix Analysis”] W p
d � 0⇔ p ≥ d2 − 2d + 2;

A satisfies (d) ⇒ Ap contractive for p = d2 − 3d + 3;
UNKNOWN OPTIMAL p;

d ≤ 10 ⇒ p = b1
2 · (d

2 − 2d + 2)c is optimal for contractivity of W p
d .
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Evetually contractive IFS. Example 1

F = (R3; fi (u) = Ai · u : i = 1, 2), Ai = W3(α = i/3),

A1 =

 0 1
3 0

0 0 1
1 2

3 0

 , A2 =

 0 2
3 0

0 0 1
1 1

3 0

 .

F2 = (R3; fi ◦ fj : i , j ∈ {1, 2}) is `1-contractive on Hc (by the KN
positivity condition: (Ai Aj)

T · Ai Aj � 0)
The attractor of F2|Hc and F|Hc
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Evetually contractive IFS. Example 2

F = (R3; fi (u) = Ai · u : i = 1, 2),

A1 =

 0 1 0
1
2 0 1

2
1
2 0 1

2

 , A2 = AT
1 =

 0 1
2

1
2

1 0 0
0 1

2
1
2

 .

Ai are eventually contractive on Hc (KN criterion: (A2
i )T · A2

i � 0),
but A2 · A1 is not.

F has no (local) attractor on Hc . (Careful verification by hand. Hint:
some lines always stick out of the candidate for a local attractor).
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