Linear IFSs consisting of stochastic matrices

Krzysztof Leśniak

Faculty of Mathematics and Computer Science Nicolaus Copernicus University in Toruń, Poland

May 2021

with Nina Snigireva (University College Dublin) and Filip Strobin (Lodz University of Technology)

 200

AIMD (additive increase multiplicative decrease)

[\[1\]](#page-14-1) Corless, King, Shorten, Wirth (2016)

Model of TCP: user $j = 1, ..., d, d \ge 2$, demands access to the internet, $0<\gamma_j < 1$ — coefficient of increase of j 's share, $\sum_{j=1}^d \gamma_j = 1$, $0 \leq \beta_i \leq 1$ – coefficient of decrease of j's share.

$$
A = \begin{bmatrix} \beta_1 & \dots & 0 \\ 0 & \dots & \beta_d \end{bmatrix} + \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_d \end{bmatrix} \begin{bmatrix} 1 - \beta_1 \dots 1 - \beta_d \end{bmatrix},
$$

 $w_{n+1} = Aw_n$ — evolution of share at nth capacity event, c — capacity of connection,

$$
w_n\in H_c=\{u\in\mathbb{R}^d:\sum_{i=1}^du_i=c\}.
$$

K Leśniak (N. Copernicus University) [Linear IFSs...](#page-0-0) Company Linear IFSs... May 2021 2/15

 Ω

지수는 지금 아버지를 지나가 되었다.

AIMD matrix

[\[1\]](#page-14-1) Corless, King, Shorten, Wirth (2016)

$$
A = \begin{bmatrix} \beta_1 & \dots & 0 \\ 0 & \dots & \beta_d \end{bmatrix} + \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_d \end{bmatrix} \begin{bmatrix} 1 - \beta_1 \dots 1 - \beta_d \end{bmatrix},
$$

 $\beta_j\in[0,1]$, $\gamma_j\in(0,1)$, $\sum_{j=1}^d\gamma_j=1$.

[\[1,](#page-14-1) Lemma 3.5 p.33]: If max_{i=1,...,d} β_i < 1, then A is Banach contractive on $\Delta_{\bm{c}}=\{u\in\mathbb{R}^{d}:\sum_{i=1}^{d}u_{i}=\bm{c},u_{i}\geq0\}\subseteq H_{\bm{c}}$ with respect to $||u||_1 = \sum_{i=1}^d |u_i|.$

QUESTION: What about $\#\{i = 1, ..., d : \beta_i = 1\} = 1$?

 -990

イロト イ押 トイヨ トイヨト

[\[2,](#page-14-2) Proposition 3.2] after improvement:

Let $A = (a_{ij})_{i,i\in\{1,\ldots,d\}}$ be a column-stochastic matrix, i.e., $a_{ij} \in [0,1]$, $\sum_{i=1}^d a_{ij} = 1$, $i,j \in \{1,\ldots,d\}$. Then the following are equivalent: (i) A is a contraction w.r.t. $\|.\|_1$ on some c-hyperplane H_c ; (ii) A is a contraction w.r.t. $\|.\|_1$ on every H_c ; (iii) (positivity) $A^T \cdot A$ has positive all entries.

 200

Kantrowitz–Neumann criterion (2014) for AIMD

Let $A = (a_{ii})_{i,i\in\{1,\ldots,d\}}$ be a column-stochastic matrix, i.e., $a_{ii} \in [0,1]$, $\sum_{i=1}^d a_{ij} = 1$, $i,j \in \{1,\ldots,d\}$. Then the following are equivalent: (i) A is a contraction w.r.t. $\|.\|_1$ on some c-hyperplane H_c ; (ii) A is a contraction w.r.t. $\|.\|_1$ on every H_c ; (iii) (positivity) $A^T \cdot A$ has positive all entries.

Corollary: If an AIMD matrix

$$
A = \begin{bmatrix} \beta_1 & \dots & 0 \\ 0 & \dots & \beta_d \end{bmatrix} + \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_d \end{bmatrix} \begin{bmatrix} 1 - \beta_1 \dots 1 - \beta_d \end{bmatrix},
$$

 $\beta_j\in[0,1]$, $\gamma_j\in(0,1)$, $\sum_{j=1}^d\gamma_j=1$, satisfies $\#\{i=1,...,d : \beta_i=1\} \leq 1$

(equivalently, A has at most one trivial $=$ unit vector column), then A is contractive on $(H_c, \|\. \|_1)$. $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

K Leśniak (N. Copernicus University) [Linear IFSs...](#page-0-0) Company 2021 5/15

 Ω

Assume:

 A_i – column-stochastic matrices, $A_i^{\mathcal{T}} \cdot A_i$ has positive all entries, $i = 1, \ldots, N$.

Then

for every
$$
c \in \mathbb{R}
$$
,
\n $\mathcal{F}_c = (H_c, f_i(u) = A_i \cdot u : i = 1, ..., N)$ is contractive w.r.t. $||.||_1$.

In particular, the above holds when each matrix A_i is an AIMD matrix with at most one trivial column (unit vector).

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Switched AIMD matrices \Rightarrow IFS attractor

(a) \mathcal{F}_c has an attractor $\mathbb{A}_*(c)$, i.e., \forall bounded $\emptyset \neq S \subseteq H_c$,

$$
F^{n}(S):=\overline{\bigcup_{(i_{1},...,i_{n})\in\{1,...,N\}^{n}}f_{i_{n}}\circ...\circ f_{i_{1}}(S)}\quad \ \text{Hausdorff}\n \ \mathbb{A}_{*}(c);
$$

 $\mathbb{A}_*(c) \equiv \mathbb{A}_*(1) \quad \forall_{c\neq 0};$ $\left(\mathfrak{b}\right)$ $\left(\mathcal{F}_{c},\left(\rho_{i}\right)_{i=1}^{N}\right)$ has an attractive invariant distribution $\mu_{*}(c)$, i.e.,

$$
M^n(\mu) := \sum_{(i_1,\ldots,i_n)\in\{1,\ldots,N\}^n} p_{i_n}\cdot\ldots\cdot p_{i_1}\cdot(\mu\circ f_{i_1}^{-1}\circ\ldots\circ f_{i_n}^{-1})\underset{n\to\infty}{\xrightarrow{\mu*}}\mu_*(c)
$$

$$
\forall \text{ distrib. } \mu \text{ on } H_c; \quad \sum_{i=1}^N p_i = 1, \ p_i > 0; \quad \text{supp } \mu_*(c) = \mathbb{A}_*(c);
$$
\n
$$
(c) \text{ (chaos game)} \quad \mathbb{A}_*(c) = \bigcap_{n=0}^{\infty} \overline{\{u_m : m \ge n\}}, \text{ where}
$$
\n
$$
\begin{cases}\n u_n := f_{i_n}(u_{n-1}), n \ge 1, & u_0 \in H_c, \\
\{1, \dots, N\}^{\infty} \ni (i_n)_{n=1}^{\infty} - \text{disjunctive (i.e., contains all finite words)}.\n\end{cases}
$$

K Leśniak (N. Copernicus University) [Linear IFSs...](#page-0-0) Company Linear IFSs... May 2021 7/15

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

AIMD triangle

AIMD triangle vs Kigami triangle

AIMD triangle: analysis

$$
\Delta_c = \text{conv}\{(c,0,0), (0,c,0), (0,0,c)\},
$$

4日下

$$
\mathcal{L}_{H_c}(\mathbb{A}_*(c)) \leq \mathcal{L}_{H_c}(F^n(\Delta_c)) \leq 3^n \cdot \left(\frac{3}{16}\right)^n \mathcal{L}_{H_c}(\Delta_c) \underset{n \to \infty}{\to} 0.
$$

K Leśniak (N. Copernicus University) [Linear IFSs...](#page-0-0) Company Linear IFSs... May 2021 10 / 15

E

 $\langle \cdot \rangle$

 $\leftarrow \equiv +$

 \sim

÷,

 299

Kantrowitz–Neumann criterion (2014) for ergodicity

[\[2,](#page-14-2) Theorem 3.3] & improved [\[2,](#page-14-2) Proposition 3.2] Let $A = (a_{ij})_{i,j \in \{1,\dots,d\}}$ be a column-stochastic $d \times d$ -matrix. Then the following are equivalent:

- (a) A is ergodic, i.e., $\exists_{u_* \in \Delta_1}^! \forall_{u \in \Delta_1} \ A^k u \underset{k \to \infty}{\longrightarrow} u_*;$
- (b) $\exists_{p\geq 1}$ A^p contains a strictly positive row;

(c) $\exists_{p\geq 1}$ $B := A^p$ is scrambling, i.e.,

$$
\forall_{k,l \in \{1,...,d\}} \ \exists_{j \in \{1,...,d\}} \ \ b_{jk}, b_{jl} > 0;
$$

- (d) ∃_{p≥1} B := A^p is an Edelstein contraction on Δ_1 w.r.t. $\|.\|_1$, i.e., $||Bu - Bv||_1 < ||u - v||_1$ for probability vectors $u \neq v \in \Delta_1$;
- (e) A is an eventual contraction on $(H_1, \|\. \|_1) \supseteq \Delta_1$, i.e., $\exists_{\rho \geq 1}$ $\,A^{\rho}$ is a Banach contraction on H_1 ;

$$
(f) \; \exists_{p\geq 1} \; (A^p)^T \cdot A^p \gg 0.
$$

Remark: If the above has simple proof, then the classical criterion for ergodicity of Markov matrices easily follows fro[m m](#page-9-0)[et](#page-11-0)[ri](#page-9-0)[c](#page-10-0) [fi](#page-11-0)[xe](#page-0-0)[d](#page-14-0) [poi](#page-0-0)[nt](#page-14-0) [th](#page-0-0)[eo](#page-14-0)ry.

K Leśniak (N. Copernicus University) [Linear IFSs...](#page-0-0) Company Linear IFSs... May 2021 11/15

Wielandt-type matrix

$$
W_d := \begin{pmatrix} 0 & \alpha & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & \dots & & \dots & \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 1 - \alpha & 0 & \dots & 0 \end{pmatrix}, \alpha \in (0, 1).
$$

\n $\frac{d}{d} \left(b \right) = \text{has positive row } \gg 0 \quad (d) = \text{is contractive}$
\n $\frac{d}{d} \left(0, \frac{1}{2} \right) = \text{as positive row } \alpha$

• [K & N & Ransford 2011] A satisfies (b)
$$
\Rightarrow
$$
 A^p contains positive row for $p = d^2 - 3d + 3$; optimal when $A = W_d$;

- [Horn & Johnson "Matrix Analysis"] $W_d^p \gg 0 \Leftrightarrow p \geq d^2 2d + 2$;
- A satisfies (d) \Rightarrow A^p contractive for $p=d^2-3d+3;$ UNKNOWN OPTIMAL p;

 $d \leq 10 \Rightarrow p = \lfloor \frac{1}{2} \rfloor$ $\frac{1}{2} \cdot (d^2 - 2d + 2)$] is optimal for contractivity of W_d^p d .

W

 Ω

イロト イ押ト イヨト イヨト

Evetually contractive IFS. Example 1

$$
\mathcal{F} = (\mathbb{R}^3; f_i(u) = A_i \cdot u : i = 1, 2), A_i = W_3(\alpha = i/3),
$$

$$
A_1 = \begin{pmatrix} 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & \frac{2}{3} & 0 \\ 0 & 0 & 1 \\ 1 & \frac{1}{3} & 0 \end{pmatrix}.
$$

 $\mathcal{F}^2 = (\mathbb{R}^3; f_i \circ f_j : i,j \in \{1,2\})$ is ℓ^1 -contractive on H_c (by the KN positivity condition: $(A_i\, A_j)^{\textstyle\mathcal{T}}\cdot A_i\, A_j\gg 0)$ The attractor of $\mathcal{F}^2|H_c$ and $\mathcal{F}|H_c$

Evetually contractive IFS. Example 2

$$
\mathcal{F}=(\mathbb{R}^3;f_i(u)=A_i\cdot u:i=1,2),
$$

$$
A_1 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right), \qquad A_2 = A_1^T = \left(\begin{array}{ccc} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{array}\right).
$$

 A_i are eventually contractive on H_c (KN criterion: $(A_i^2)^{\mathcal{T}} \cdot A_i^2 \gg 0$), but $A_2 \cdot A_1$ is not.

 $\mathcal F$ has no (local) attractor on H_c . (Careful verification by hand. Hint: some lines always stick out of the candidate for a local attractor).

 Ω

イロト イ押ト イヨト イヨト

THANK YOU

- 譶 M. Corless, C. King, R. Shorten, F. Wirth, AIMD Dynamics and Distributed Resource Allocation, SIAM, Philadelphia, 2016.
	- R. Kantrowitz, M.M. Neumann, A fixed point approach to the steady state for stochastic matrices, Rocky Mt. J. Math. 44 (2014), no. 4, 1243-1250.

 QQ