Michał Popławski

ONE-POINT EXTENSION PROPRERTY FOR 1-LIPSCHITZ RETRACTIONS DEFINED ON THE UNIVERSAL URYSOHN SPACE $\mathbb U$

Let \mathbb{U} be the universal Urysohn space. Let $U \colon \mathbb{U} \to \mathbb{U}$ be a 1-Lipschitz retraction, and define $D \colon \mathbb{U} \to \mathbb{R}$ by

$$D(x) = \operatorname{dist}(x, U[\mathbb{U}]), \ x \in \mathbb{U}.$$

We say that the triple (\mathbb{U}, U, D) has the *one-point extension property* (UR) if the following holds:

For every finite metric space $B=A\cup\{b\}$, every 1-Lipschitz retraction $r\colon B\to B$ such that $r[A]\subseteq A$, every 1-Lipschitz function $p\colon B\to [0,\infty)$, and every isometric embedding $i\colon A\to \mathbb{U}$ satisfying

$$U \circ i(x) = i \circ r(x)$$
 and $D \circ i(x) = p(x)$ for all $x \in A$,

there exists an isometric embedding $i' \colon B \to \mathbb{U}$ extending i such that

$$U \circ i'(x) = i' \circ r(x)$$
 and $D \circ i'(x) = p(x)$ for all $x \in B$.

Michal Doucha proved in Universal and homogeneous structures on the Urysohn and Gurarii spaces, Israel J. Math. **218** (2017), that such a triple exists. In fact, we may focus solely on U, since $\mathbb U$ is fixed and the function D is entirely determined by U. We will show that the set of 1-Lipschitz retractions $U: \mathbb U \to \mathbb U$ satisfying (UR) is a G_{δ} subset of the set of all 1-Lipschitz retractions $\mathbb U \to \mathbb U$ considered with a pointwise topology.

Institute of Mathematics, Lodz University of Technology $Email\ address$: michal.poplawski.m@gmail.com