IDEAL BOUNDEDNESS OF SUBSERIES AND REARRANGEMENTS IN BANACH SPACES

MICHAŁ POPŁAWSKI

Let \mathcal{I} be an admissible ideal on \mathbb{N} , i.e.

- (1) $\emptyset \in \mathcal{I}$,
- (2) $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I},$
- $(3) \ A \subset B \land B \in \mathcal{I} \Rightarrow A \in \mathcal{I},$
- (4) $\mathbb{N} \notin \mathcal{I}$,
- (5) $Fin \subset \mathcal{I}$.

The simplest example of an ideal is the family of all finite subsets of \mathbb{N} denoted by *Fin.* Consider product topology in $\{0,1\}^{\mathbb{N}} = P(\mathbb{N})$ and suppose that \mathcal{I} has the Baire property (\mathcal{I} is a symmetric difference of open set and nowhere dense set) in $P(\mathbb{N})$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ in a normed space is \mathcal{I} -bounded if there is M > 0 with

$$\{n \in \mathbb{N} \colon ||x_n|| > M\} \in \mathcal{I}.$$

Note that Fin-boundedness coincides with the notion of boundedness.

Put $S := \{s \in \mathbb{N}^{\mathbb{N}} : s \text{ is increasing}\}, P := \{p \in \mathbb{N}^{\mathbb{N}} : p \text{ is a bijection}\}$. It is easy to see that both sets are the Polish spaces, like as $\mathbb{N}^{\mathbb{N}}$ (with product topology). Denote

$$E(\mathcal{I}, (x_n)) := \left\{ s \in S \colon \left(\sum_{i=1}^n x_{s(i)}\right)_n \text{ is } \mathcal{I} - \text{bounded} \right\},\$$
$$F(\mathcal{I}, (x_n)) := \left\{ p \in P \colon \left(\sum_{i=1}^n x_{p(i)}\right)_n \text{ is } \mathcal{I} - \text{bounded} \right\}$$

for a sequence $(x_n)_n$ in a normed space. Banach spaces X and Y are isomorphic if exist a linear surjection $T: X \to Y$ and m, M > 0 with $m||x|| \le ||Tx|| \le M||x||$ for all $x \in X$.

Theorem 0.1. Suppose \mathcal{I} is an ideal with the Baire property, $\sum x_n$ is a series which is not unconditionally convergent in a finite-dimensional Banach space X. Then $E(\mathcal{I}, (x_n)), F(\mathcal{I}, (x_n))$ are meagre in S, P, respectively.

Theorem 0.2. Suppose \mathcal{I} is an ideal with the Baire property and X is infinitely-dimensional Banach space X. Then X contains a copy of c_0 iff for each series $\sum x_n$ in X, which is not unconditionally convergent and $\liminf_{n\to\infty} ||x_n|| = 0$ both sets $E(\mathcal{I}, (x_n)), F(\mathcal{I}, x_n))$ are meagre in S, P, respectively.